Optique : guide pratique

Les cibles de calage Prêt À Tourner

Les cibles utilisées par Prêt À Tourner pour ses mires ont une histoire et une explication mathématique très précise. Il faut remonter au milieu du XIXè siècle pour voir leur première apparition grâce aux travaux de Léon Foucault. Aujourd'hui, P.A.T. reprends ce codage de périodes de traits et le démocratise pour vous offrir les meilleurs outils techniques pour le calage de vos optiques et capteurs avec un maximum de simplicité.

Léon Foucault (1819-1868), éminent physicien et astronome français (à qui l’on doit entre autres l’invention du gyroscope, la détermination de la vitesse de la lumière, ou encore la démonstration de la rotation de la Terre par la célèbre expérience dite du Pendule de Foucault) tourna ses premières recherches vers la photographie, puis plus tard vers des questions les plus élevées de la théorie de la lumière. À dessein d’améliorer la précision de ses instruments astronomiques, il utilisa ce qu’il appelait des « mires d’épreuve », outils dont il a toujours fait un usage singulier, sans penser à les faire référencer de quelque manière que ce fut. Supposant probablement que cela n’intéresserait personne. Il y est tout de même fait allusion dans le Recueil des travaux scientifiques de Léon Foucault, ouvrage posthume datant de 1878, notamment dans le chapitre « Mémoire sur la construction des télescopes en verre argenté ».

Léon Foucault
Léon Foucault (1819-1868)

« Mais pour juger sûrement du résultat, et pour donner une expression moins vague que celle qu’on emprunte habituellement au langage ordinaire, il convient de diriger le miroir monté en télescope newtonien vers une mire lointaine, systématiquement composée de manière à offrir à l’observation des détails placés à la limite de la visibilité. On construit ces mires d’épreuves en traçant sur une lame d’ivoire des séries de divisions partagées en groupes successifs où le millimètre est fractionné en parties de plus en plus petites. La largeur du trait doit varier d’un groupe à un autre en proportion telle, que dans chacun d’eux les espaces noircis aient la même étendue que l’intervalle qui les sépare (fig. 18). Quand on considère à l’oeil nu une pareille mire placée à distance ou qu’on l’observe avec un instrument trop faible, les différents groupes présentent une teinte grise uniforme. Mais si l’on diminue la distance ou si l’on prend des instruments plus puissants, on voit les groupes de divisions les plus écartées se résoudre en traits distincts, tandis que les autres restent confondus. En augmentant le grossissement, et en éclairant suffisamment la mire, on s’assure que dans les groupes qui demeurent uniformément gris, la confusion des traits n’est pas imputable à l’impuissance de l’oeil ; elle est donc à mettre tout entière sur le compte de l’instrument qui résout l’un des groupes et ne résout pas le suivant. En constatant ainsi quel est le groupe dont les divisions se trouvent par leur rapprochement, placés à la limite de visibilité, on acquiert la preuve positive que l’instrument sépare les parties écartées par un certain espace angulaire, et ne sépare pas celles qui sont plus rapprochées les unes des autres. Il suit de là que l’aptitude de l’instrument à pénétrer les détails des objets observés, ou ce qu’on peut appeler son pouvoir optique, est inversement proportionnel à l’angle limite de séparabilité de divisions contiguës : il a, en définitive, pour expression le quotient de la distance de la mire par l’intervalle moyen des dernières parties distinctes ».

Recueil des travaux scientifiques de Léon Foucault
Recueil des Travaux Scientifiques de Léon Foucault

Il est à noter l’amendement de cet outil par Guillaume Bigourdan (1851-1932) autre brillant astronome français, par la représentation de ces mêmes motifs, inclinés de 45° ce qui permet de mettre en évidence un éventuel problème d’astigmatisme. Le scientifique a considérablement répandu l’utilisation des mires ainsi représentées.

Guillaume Bigourdan
Guillaume Bigourdan (1851-1932)

De prime abord, la mire de Léon Foucault d'après Guillaume Bigourdan n'est pas une mire dédiée au cinéma ou aux essais caméras. Elle permet de caractériser l'acuité visuelle du seul appareil optique propre à chaque utilisateur : l'oeil humain. Et ce, d'un objet vu à 10 mètres.

La première explication des mires par G. Bigourdan était la suivante :

« Les numéros expriment, en vingtièmes de millimètres, la distance des axes de deux traits noirs (ou de deux traits blancs) consécutifs. Ils expriment ainsi, en secondes d'arc, la distance angulaire de ces axes à 10 mètres ».

Le degré (°) est l'unité de base pour mesurer un angle. Un angle droit fait 90°, un tour complet fait 360°. Un angle de 1° peut ensuite se subdiviser en sous-unités. Un degré est ainsi constitué de 60 minutes d'arc, chacune divisée en 60 secondes d'arc. Une minute d'arc est donc égale à 1/60 degré, soit 0.0166°, et une seconde d'arc à 1/3600 degré.

En pratique pour des essais caméra, même si la numérotation d'une mire P.A.T. a été conçue pour mesurer l'acuité de l'oeil humain à une distance de 10 mètres, cela n'empêche en rien son utilisation pour une vérification de calage et de définition avec n'importe quel système de prise de vue et à n'importe quelle distance.

P.A.T. a donc décidé de simplifier cette explication technique basée sur les secondes d'arc, certes très utile dans de nombreux cas de tests optiques, mais peut-être un peu complexe dans la majeure partie des utilisations.

L'explication des nombres est donc la suivante :

« Les numéros des cibles expriment, en vingtième de millimètre, le nombre de paires de lignes imprimées sur 1 millimètre ».

Le degré de netteté dépendra de la clarté entre les lignes noires. Le pouvoir de résolution dépendra du nombre de lignes vues.

Afin de vous aider à utiliser au mieux cette période de cibles, P.A.T. met à votre disposition un tableau de corrélation dans lequel sont indiqués la correspondance entre : numéro sur la mire, paires de lignes / mm imprimées sur la mire, paires de lignes / mm imprimées sur votre capteur à une distance de test égale à 50 fois la focale.

Table de correspondance des cibles Prêt À Tourner

En filmant la mire à 50 fois la distance focale

Chart numberPairs of lines / mm on the chartPairs of lines / mm on the sensor
45250
54200
63,333166,667
72,857142,857
82,5125
92,222111,111
102100
111,81890,909
121,66683,333
131,53876,923
141,42971,429
151,33366,666
161,2562,5
171,17658,824
181,11155,555
191,05352,632
20150
210,95247,619
220,90945,455
230,8743,478
240,83341,666
250,840
260,76938,462
270,74137,037
280,71435,714
290,6934,483
300,66633,333
310,64532,258
320,62531,25
330,60630,303
340,58929,412
350,57128,571
360,55527,777
370,54127,027
380,52626,316
390,51325,641
400,525
410,48824,39
420,47623,81
430,46523,256
440,45522,727
450,44422,222
460,43521,739
470,42621,277
480,41720,833
490,40820,408
500,420
550,36418,182

linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram